WSEAS TRANSACTIONS on MATHEMATICS

S. Boonthiem, S. Boonta, W. Klongdee

Linear spline mapping in Normal Distribution

S. BOONTHIEM, S. BOONTA, W. KLONGDEE
Khon Kaen University, THAILAND
+669-1059-0942, kwatch@kku.ac.th

Abstract— This article presents a construction of a new distribution by using linear spline mapping based on
probability density function of normal distribution where two end points have a value of probability density function
as zero. In addition, we propose the cumulative distribution function and the inverse of cumulative distribution
function of the distribution. Furthermore, we illustrate the parameter estimation of 77 data of the student’s average
intelligent quotient (1Q) for Grade 1 in Thailand by method of moments and propose minimum Ks -statistics of the

distribution by difference of the node width.
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1 Introduction

The inferential statistics can describe the behavior of
data by parametric statistics and non-parametric
statistics depending upon trend of the data. The trend of
data indicates the shape of the distribution. Distribution
theory is closely related to probability theory and
important in order to calculate and approximate a
probability distribution. Nowadays, many researchers
are interested in the approximation of the standard
cumulative normal distribution function, due to the
integral of normal distribution does not have closed
form theoretical expression. However, it give only
approximation as the work of many researchers. For
instances, Bowling, Khasawneh, Kaewkuekool, and Cho
(2009) developed a logistic approximation to the
cumulative normal distribution. The proposed algorithm
has a simpler function form and gave higher accuracy
with maximum error of less than 0.00014 for the entire
range [1]. Vazquez-Leal et al. (2012) provided an
approximate solution to the normal distribution integral
by using the homotopy perturbation method (HPM). The
HPM method have a high level of accuracy [2].
Choudhury  (2014) proposed a very simple
approximation formula to the standard cumulative
normal distribution function. The formula could be
implemented in any hand-held calculator. The maximum
absolute error of the approximation was 0.00019 [3].
This article interested in the case study of the
approximation of the cumulative normal distribution
using linear spline mapping. We expect that this method
can use to other symmetrical distributions. Linear spline
is widely method for estimation in many fields such as
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statistics, mathematics, industrial engineering and so

forth. In 1999, Chen studied the estimation of the
probability density function and the cumulative
distribution function of random variable. There were
three spline density estimators consisting of a quantile
regression spline estimator and two maximum likelihood
spline estimators. These methods proposed for variable
observed with measurement error [4]. In the same year,
Lindstrom improved the computational and estimation
properties of free-knot splines while retaining their
adaptive smoothing properties and proposed estimator
for the knots defined as the optimizer of a slightly
penalized residual sum-of-squares [5]. In 2002, Zhang
and Lin investigated the optimal models for building
histograms based on linear spline techniques and
presented efficient algorithms to achieve these proposed
optimal models. The experimental results showed that
these  techniques could greatly improve the
approximation accuracy comparing to the existing
techniques [6]. In 2012, Holland employed penalized B-
splines in the context of the partially linear model to
estimate the non-parametric component, when both the
number of knots and the penalty factor vary with the
same size [7]. In 2013, Valenzuela, Pasadas, Ortufio,
and Rojas presented a novel methodology for optimal
placement and selected of knots, for approximating or
fitting curves to data, using smoothing splines [8]. In
2015, Kang, Chen, Li, Deng, and Yang proposed a
computationally efficient framework to calculate knots
for splines fitting via sparse optimization [9]. In the
same year, Tjahjowidodo, Dung, and Han proposed a
fast method for knots calculation in a B-spline fitting
based on the second derivative [10]. In 2017, Hussain,
Abbas, and Irshad proposed a new quadratic
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trigonometric B-spline with control parameters was
constructed to address the problems related to two
dimentional digital image interpolation [11]. Our study
is to construct a new distribution using linear spline
mapping on probability density function of normal
distribution and obtain the cumulative distribution
function after that. Furthermore, this study proposes the
inverse of cumulative distribution function that have
useful for generating the random variable of some data.

2 Main Results

In this section, we interpret the principle of linear
spline mapping through on the following definitions,
propositions, and theorems. Throughout this article, we
use the following notations,

AT, (f (Xi+l>) =Tp (f (Xi+l>)_TD (f (Xi ))’ AX =Xy — X
AR Af (x,) = F (%) F(),

f(xwl)w, ¢

X =

Definition 1. Given
Cq (R)={f :R — R|f is continuous and bounded},

Xy, %,..., %, € R, foreach x, < x <...<x, and let
D={X.X,...,
the function T, :C, (R) — C, (R) which is given by
L To(f(%)=To(f(x))=0
2. Ty(f(%))="f(x) forall k=12,.,n-1.

T, is called a linear spline mapping which

X, } be a partition which corresponding to

corresponding to the partition D = {x,,x,,...

X}

Remark 1. From the Definition 1, we obtain that for all
xeR—-D,

>

-1

To(f () =22

i=0

AT, ( f (xm))

AXiH X[waul)(x)'

](x—xi)-i-TD(f (%))

X < X< Xy

Proposition 2. Let D={x,,x,...,x,} be a partition
which corresponding to the
functionT, :C; (R) — C4 (R). Then T, is a linear

operator.

Proof. To show that T, is a linear operator, we prove
two properties as the following:
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1 T (f+9)(x)=T, (f)(x)+T,(g)(x), forall

f,geCy(R).
2. Ty (af)(x)=aT,(f)(x), forall R and
f €Cy(R).
Let f,geCy(R)xeR.
Consider
To (F)(X)+To (9)(x)
Z ATDgi(lx,+1)]<xxi)+TD(f)(x,) Xoony ()
J{; ATDA(i)(lxM)}(X_XI)”D(g)(xl)x[m)(x)
_ [ATD&)(XJ](X Xo)+To (F)(%) X (X) 4+
ATDgn)(xn)](x—xn1)+TD(f)(xn1) X o (%)
O ) 00 00
(Sl s, 01 (0
S W CIRAN TR e
=T, (f+9)(x).
Let o € R.Consider
aT, (F)(x)
—oS e ) ()00 0
_ : %‘W](xxi)mn(f)(xi) Yony (X)
= In: AOéAin(jlm)}(x—xi)—i-af (%) X[X.VX.H)(X)
S B L I I ey
=T, (af)(x).
QE.D.
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Proposition 3. Let (C,(R),[]. ) be a normed space for
allxe R, D={x,,x%,....x,} beapartition which
corresponding to the function T, :C, (R)— C; (R) and
T, be a linear spline mapping. Then T, is bounded

linear operator.

Proof. Let f eC,(R). Consider
o (5], < max{[f ()] )] 050 ()
<supd]f ()}

=[]

}

Q.E.D.

Remark 4. Let L :{f :fR|f|dx<oo},feLg(R),

X,} be a partition which corresponding to
the function T, :C, (R) — C, (R) and IT, : L (R)— R
such that ITD(f):ffc (To f)(x)dx. Then IT,is a linear

operator.

Proposition 5. LetD ={x,,x,...,x,} be a partition
which corresponding to the

functionT, :C, (R) — C, (R), (L (R),||..) be anormed
space forall xe R, and IT,:L;(R)— R be a linear
spline mapping. Then IT, is bounded.

Proof. Let f e L;(R). Consider

o (F)].

gmax{n|f (x0)|,n|f (x1)|n|f (xH)|,n|f (x,)

J

:nmax{|f(xo)|,|f(x1)| """ |f<Xn—1>’|f<Xn)}
< nsup|f (x)|
XxeR
=n[f].-
Q.E.D.

Theorem 6. Let D ={x,X,....x,} be a partition
corresponding to a linear spline mapping
T,:Cy(R)—Cy(R). Then

X n-1____
fxo To (F (%)) dx =" f (X0 JA%,.

i=0
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Proof. Consider

fX:"TD(f (x))dx

Q.E.D.

Definition 2. Let D ={x,,x,...,x,} be a partition

corresponding to a linear spline mapping

T, :C; (R)— C4(R). The partition D is called a
P — partition corresponding to T, for a probability
density function f €C, (R), if

fiTD (f(x))dx=1.

In addition, T, f is a probability density function.

Theorem 7. Let xe R, D={X), X,.... %, } ,
X, < % <--- <X, Where
Axi{d' _|:2,3,...,.n71
¢, i=1 or i=n,
dd>0 =1 { (%)
and d >0, /= 1-> o(x d],
o(x)| =

T, :C; (R)— C4(R) be a linear spline mapping and
#(x) be any probability density function. Then D is
P — partition for the probability density function ¢.

Proof. Consider

f_iTD (6(x)) dx

:fx:"TD (#(x)) dx

:f:TD (¢(x)) dx+f:"1TD (¢(x)) dx+fxnxj Ty (6(x)) dx
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Thus D is P — partition for a probability density
function ¢.

Q.E.D.

Corollary 8. Let D={x,,x,,...,x,} bea P—partition
corresponding to a linear spline mapping

T, :Cy (R)— Cy (R) Where x, < x <--<X,,

Axi{d' _|:2,3,...,.n7

¢, i=1 or i=n,
n-1___

d>0, (= {1 o(x)d| and ¢(x) be any
i=2

probability denSIty function. Then oD+ is a partition

corresponding to a oT ,_ for a probability density

oD+p

function of normal distribution N (11,0%).

Proof. Foreach x, € D, we consider

21

oXi+p—p ’
2

o

1
f(oxi—l—u;u,a) :g\/ﬂ
_ 1 e—%x?

o2m

1
==¢(x)

o

such that ¢ is a probability density function of a

standard normal distribution. Consider

j: oT o, (F(oX + 15 0)) dx
- Uf oD+p [_ ] dX

:o’;fj:cTaDﬂl (6(x)) dx
(n+1) x=x)’

+1

n-1
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- 20: Aiiij)(AX;)z + o) AZE( ,H)%%(Xi)&
-S| a sat)ax,
D STEMICH
1
Q.E.D.

Next, we illustrate to support our theorems that help
reader to understand the approach. Firstly, we consider

0 X < X,
5+%(x—x1) X <X <X

f(x)=15 X < X< X,
5—%(x—x2) Xy < X< X
0 PX > X,

and set d = %, we calculate ¢ value as the following

equation:
o L fe)+ (), :1{1‘[EHZL'
f(x) 2 5 2 )6/ 30

S0 o :%f(&)uwd %f( x,)¢

=227 s) 20 e

Theorem 9. Let D ={x,,X,...,
corresponding to a linear spline mapping
T, :Cy (R) = Cy(R), %, <x <---<x, Where

d i=23..,n—
Axi{ I .n
¢, i=1 or i=n,

X,} be a P— partition

n-1____
d >0, ﬂ_ 1

i=2

(;5 ] ¢ be probability

density functlon of normal distribution

and ¢ (x, )= f O<Z¢ )d <1,
N(x):mm{k:xgxk},
CT, f ( f To ((5)) ) O, and given
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0 P X< Xy
LXl)—z—x x+ﬁ Xo < X< X
¢ |2 T2 -

F(x)e MLt Af(xN(x)> )
f(x)d -
2 ; () + a
Af(xN(x))

CT,(f(x))=
D( ( )) Af<XN(x)>X2 ff(x )X X < XX

24 N(x)-1 N(x)—1/ "N (x)-1 ' — N(x)

CTo f (%) Afz(gxn) X2

Af

l (Xn) n-1__ f(xn—l) X+
l

= (Xn> §—1 f (Xn—1>xn—1 Xy <X < X,

20 .
PX > X,

Then CT, f is the cumulative distribution function of
T

D"

Proof. Since T, (f(x,))=T,(f(x,))=0,we get

obviously
))dx=0= f T

f T, (

We consider in case of Xy < X< X,

CT, f( f T X[xox
:fx: DA—xl(S X,)+To (f(x,))|ds
AT, (f(x))(s? s=x
- %{?_xos]‘i‘-%(f(xo))s 7
CTo f (%)
AT, f 2 _x
DAXi(Xl)[ % )]—i—TD(f( ) (x—%)
f 2 — %2
- (ZXJ[ 2 O_XO(X—XO)]
f 2 2
=¥[%—XOX+?" :
T (f
For x=x,, we obtain CT,f(x) = D( 2()(1)) /.
Next, we consider in case of x, , < x<x,,

i=12,...,N(x) where N(x)=
CTo f (X))

min{k:x<x.} so
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- ff;TD(f(x))X[x X
Ny AT (f(x
S ix_( Dis—x )+ (£ (x.0)) s
ATy (F(x 2 _ 2
- Dgxf ))[x 2x0 o (X3 ) [T (£ (1)) (X =%, )+
AT, (F(%,)) (%2 —x2
Ax, [ 5 X ()T (F () (x=x) 4o+
AT, F Xy 2 fo
ixf( )jl) ))[X );N() 2 — Yoo (X—Xypo) |+
TD(f (XN(X%Z))(XiXN(X)*Z)JFL/;:HTD(f (s))ds
(f( )g " Af (XN(X))
f( — e
R 2R 2d
Af
(d )XN(X) . f(XN(x)fl) X+
Af (X
()
%XEW = X 1) X 5
For N(x)=n-1, we obtain
CTo f (X ) = (0 )£+Zf
Next, we comblneln case of L <x<x, i=12,..,n-1

and x_, < x<x_,Wwe obtain
CTo (f(x))

- f::TD (£ (X)) X, O+ ff;TD (%), 0
AT, (f (%))

= CTo (F (%)) + AX,

=CT, ( f (XN(X)))Jr—ATD <2f£(x” ) X2

(s =%, 4)+To(F (. ))ds

AT, (F(x))) ,
! (g (x.) X =T (F (X)) Xy
=CT,f (XN(X))JFNZ(Z“)XZ—[NEX )xnf1 f (X, )| X+
Afz(gxn) Xo oy — (X)X s
For N(x)=n, we obtain
ot f (x) =L %) ) Z (f(xznl))g
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~(FO) 3T
_ f(xi)%)q)\l—: (%) d]+ : f(x )
=1
Q.E.D.

Next, we propose the parameter estimation and the
inverse of the cumulative distribution function of
T, f(x) that ithasuseful for generating a random

variable of some data as the Remark 10. We estimate
parameter of T, f (x) based on normal distribution using

method of moments (MM) and use the 77 data of the
student’s average intelligent quotient (1Q) for Grade 1
that survey between November 2015 and February 2016
in all provinces of Thailand as shown the frequency of
data as Figure 1.

o of )

Fig. 1 Frequency of aver Grad 1

in Thailand

age 1Q of student

Table 1. Test of normality of the interesting data

Kolmogorov-Smirnov Shapiro-Wilk

Statistic  df Sig. Statistic  df Sig.

0.05685 77 0.200° 0.990617 77 0.848593
5

Table 1 shows that the interesting data do not reject
normal distribution at the 0.05 significance level.

Next, we propose the algorithm of parameter
estimation as the following steps:

Step 1. Input data and sort data by ascending.
Step 2. Estimate parameter of normal distribution using
the MM. If we have the dataset x,, x,,...,x,,, we get the

MM of normal distribution that have the location
parameter » and the scale parameter o approximate by

X=X, 6= f%i(xi—i)z.
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Step 3. Set N (is node) for determining the intervals of
distribution with the width of the intervals is equal to d
for each interval [x,x,,|,.i=12,--,n—2. The other

].

i+1
intervals are|x,, x| = ¢ =[x, X,

Step 4. Compute Ks -statistics,
i
KS = mg:lx‘CTD f (xi;e)—a‘ \
where 0 is the parameter of distribution and m is the
size of data.

Remark 10. Let u €(0,1) be a uniform distribution
function.

If CT,f(x,)<u<CT,f(x) then
2uf
X=X, =+ .
T (%)

If CT,f (xi71)<u§CTDVf (%), 1=1,2,3,...,N(x)

where N (x) =min{k:x<x,} then we set

Al Af (:N(X)) B Af (:N(x)) Xy — (XN( )—1)' and
Af
C= (:N<X))X§<x) —2f (XN(M)XN(X%1

+2CTo f (X4 ) — 2,

ie. x:l(Bi B? —AC).
A

If CT,f(x,,)<u<CT,f(x,) then we set
f(x,) 5 Af (xn)x f(x,),

¢ ¢
X:q —2f (Xn—l)xn—l +2CTD f (XN(X))_ZU’

Af (xn)
0
ie. x:%<J TINAE HK).

H:

n—1

and K =

In the rest of this section, we propose the Ks -
statistics of the interesting data through MM as shown in
Table 1 and  Fig. 2-4. The experimental situations
consider N=1,2,..., 300for d=0.1, N=12,...,2000
ford =0.01, and N =1,2,...,3000 ford =0.001. Table 2
shows the minimum Ks -statistics of the interesting data
for d=0.1,0.01 and 0.001 which found that at
N = 26,259 and 2591obtain the minimum Ks -statistics
as 0.0497. Moreover, we see that the new distribution
has Ks -statistics less than of the normal distribution
that show in Table 1 and Table 2.
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Table 2. The minimum KSs -statistics of the interesting data

through MM
N d ¢ i G KS -
statistics
26 0.1 6.909 98.1642 4.2340 0.0497
8
259 0.01 6.919 98.1642 4.2340 0.0497
5
259 0.001 6.918 98.1642 4.2340 0.0497
1 5
0.07 T T T
0.065 =
*E 0.06 -
£
Q 0.055 - B
0.05 —
0.045 | | | | |
0 50 100 150 200 250 300
Number of N
Fig. 2 Ks -statistics of the interesting data for d =0.1
0.07 T T T T T T T
0.065 -
é 0.06 — —
£
5 0.055 — -
0.05 -
0.045 | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of ¥
Fig. 3 Ks -statistics of the interesting data for d = 0.01
0.075 T
0.07 ]

7 0.065 —

K§ -Statistics
=
=
o
I

0.055 -
005 =
0.045 L
0 500 1000 1500 2000 2500 3000
Number of N

Fig. 4 Ks -statistics of the interesting data for d = 0.001
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3 Conclusion

The linear spline mapping on the probability density
function of normal distribution can be represent the
normal distribution. Moreover, the new distribution has
the inverse of cumulative distribution function that can
generate the random variable for determining some of
data which give the value of parameter as of normal
distribution.
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